129 research outputs found

    A new projection method for finding the closest point in the intersection of convex sets

    Get PDF
    In this paper we present a new iterative projection method for finding the closest point in the intersection of convex sets to any arbitrary point in a Hilbert space. This method, termed AAMR for averaged alternating modified reflections, can be viewed as an adequate modification of the Douglas--Rachford method that yields a solution to the best approximation problem. Under a constraint qualification at the point of interest, we show strong convergence of the method. In fact, the so-called strong CHIP fully characterizes the convergence of the AAMR method for every point in the space. We report some promising numerical experiments where we compare the performance of AAMR against other projection methods for finding the closest point in the intersection of pairs of finite dimensional subspaces

    A new and self-contained proof of Borwein's norm duality theorem

    Get PDF
    Borwein’s norm duality theorem establishes the equality between the outer (inner) norm of a sublinear mapping and the inner (outer) norm of its adjoint mappings. In this note we provide an extended version of this theorem with a new and self-contained proof relying only on the Hahn-Banach theorem. We also give examples showing that the assumptions of the theorem cannot be relaxed.Grant BES-2003-0188 from FPI Program of MEC (Spain)

    Global Behavior of the Douglas-Rachford Method for a Nonconvex Feasibility Problem

    Get PDF
    In recent times the Douglas-Rachford algorithm has been observed empirically to solve a variety of nonconvex feasibility problems including those of a combinatorial nature. For many of these problems current theory is not sufficient to explain this observed success and is mainly concerned with questions of local convergence. In this paper we analyze global behavior of the method for finding a point in the intersection of a half-space and a potentially non-convex set which is assumed to satisfy a well-quasi-ordering property or a property weaker than compactness. In particular, the special case in which the second set is finite is covered by our framework and provides a prototypical setting for combinatorial optimization problems

    A feasibility approach for constructing combinatorial designs of circulant type

    Get PDF
    In this work, we propose an optimization approach for constructing various classes of circulant combinatorial designs that can be defined in terms of autocorrelations. The problem is formulated as a so-called feasibility problem having three sets, to which the Douglas-Rachford projection algorithm is applied. The approach is illustrated on three different classes of circulant combinatorial designs: circulant weighing matrices, D-optimal matrices, and Hadamard matrices with two circulant cores. Furthermore, we explicitly construct two new circulant weighing matrices, a CW(126,64)CW(126,64) and a CW(198,100)CW(198,100), whose existence was previously marked as unresolved in the most recent version of Strassler's table

    Globally convergent algorithms for finding zeros of duplomonotone mappings

    Get PDF
    We introduce a new class of mappings, called duplomonotone, which is strictly broader than the class of monotone mappings. We study some of the main properties of duplomonotone functions and provide various examples, including nonlinear duplomonotone functions arising from the study of systems of biochemical reactions. Finally, we present three variations of a derivative-free line search algorithm for finding zeros of systems of duplomonotone equations, and we prove their linear convergence to a zero of the function.This work was supported by the National Research Fund, Luxembourg, co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND), and by the U.S. Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant #DE-SC0010429

    The Cyclic Douglas-Rachford Algorithm with r-sets-Douglas-Rachford Operators

    Get PDF
    The Douglas-Rachford (DR) algorithm is an iterative procedure that uses sequential reflections onto convex sets and which has become popular for convex feasibility problems. In this paper we propose a structural generalization that allows to use rr-sets-DR operators in a cyclic fashion. We prove convergence and present numerical illustrations of the potential advantage of such operators with r>2r>2 over the classical 22-sets-DR operators in a cyclic algorithm.Comment: Accepted for publication in Optimization Methods and Software (OMS) July 17, 201

    An enhanced formulation for solving graph coloring problems with the Douglas–Rachford algorithm

    Get PDF
    We study the behavior of the Douglas–Rachford algorithm on the graph vertex-coloring problem. Given a graph and a number of colors, the goal is to find a coloring of the vertices so that all adjacent vertex pairs have different colors. In spite of the combinatorial nature of this problem, the Douglas–Rachford algorithm was recently shown to be a successful heuristic for solving a wide variety of graph coloring instances, when the problem was cast as a feasibility problem on binary indicator variables. In this work we consider a different formulation, based on semidefinite programming. The much improved performance of the Douglas–Rachford algorithm, with this new approach, is demonstrated through various numerical experiments.F. J. Aragón Artacho and R. Campoy were partially supported by MICINN of Spain and ERDF of EU, Grants MTM2014-59179-C2-1-P and PGC2018-097960-B-C22. F. J. Aragón Artacho was supported by the Ramón y Cajal program by MINECO of Spain and ERDF of EU (RYC-2013-13327) and R. Campoy was supported by MINECO of Spain and ESF of EU (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015”
    corecore